0.5% above $3 \mathrm{~mol} \mathrm{~kg}^{-1}$. If more reliable standard data become available for $\mathrm{H}_{2} \mathrm{SO}_{4}$ at high concentrations, a corresponding improvement will occur in the CaCl_{2} osmotic coefficients. It should be noted that the data reported here exhibit less scatter than Stokes' results, especially below $7.0 \mathrm{~mol} \mathrm{~kg}^{-1}$. This presumably occurs because of the longer equilibration times used by us. The osmotic coefficients from this research also agree reasonably well with those from other sources below 3 mol kg^{-1}.

Acknowledgment

The authors thank Herman O. Weber for preparing and ana-
lyzing the CaCl_{2} stock solution and Teny Habenschuss for preparing the conductivity water.

Literature Cited

(1) Rard, J. A., Habenschuss, A., Spedding, F. H., J. Chem. Eng. Data, 21, 374 (1976).
(2) Rard, J. A., Habenschuss, A., Spedding, F. H., J. Chem. Eng. Data, submitted.
(3) Spedding, F. H., Weber, H. O., Saeger, V. W., Petheram, H. H., Rard, J. A., Habenschuss, A., J. Chem. Eng. Data, 21, 341 (1976).
(4) Stokes, R. H., Trans. Faraday Soc., 41, 637 (1945).

Received for review April 30, 1976. Accepted August 13, 1976. This work was performed for the U.S. Energy Research and Development Administration under Contract No. W-7405-eng-82.

Heats of Dilution of Some Aqueous Rare Earth Electrolyte Solutions at $25{ }^{\circ}$ C. 3. Rare Earth Chlorides

Frank H. Spedding,* Carroll W. DeKock, George W. Pepple, and Anton Habenschuss
Ames Laboratory-ERDA and Department of Chemistry, lowa State University, Ames, lowa 50011

Abstract

The heats of dilution of aqueous $\mathrm{LaCl}_{3}, \mathrm{PrCl}_{3}, \mathrm{NdCl}_{3}, \mathrm{SmCl}_{3}$, $\mathrm{EuCl}_{3}, \mathrm{GdCl}_{3}, \mathrm{TbCl}_{3}, \mathrm{DyCl}_{3}, \mathrm{HoCl}_{3}, \mathrm{ErCl}_{3}, \mathrm{TmCl}_{3}, \mathrm{YbCl}_{3}$, and LuCl_{3} solutions have been measured up to saturation at 25 ${ }^{\circ} \mathrm{C}$. The integral heats of solution of $\mathrm{LaCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{PrCl}_{3}{ }^{.}$ $7 \mathrm{H}_{2} \mathrm{O}, \mathrm{NdCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{SmCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{EuCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{GdCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{TbCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{DyCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{HoCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{ErCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{TmCl}_{3} \cdot$ $6 \mathrm{H}_{2} \mathrm{O}, \mathrm{YbCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, and $\mathrm{LuCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in water at $25^{\circ} \mathrm{C}$ have also been measured. The heat of dilution data are represented by empirical equations, and relative partial molal heat contents are calculated. The heat content trends across the rare earth chloride series are similar to the trends found for the rare earth perchlorate heat data, and can be correlated with a change in the inner sphere cation water coordination across the rare earth cation series.

The heats of dilution of aqueous rare earth chloride solutions up to 0.2 m have been reported $(28,32)$. These dilute data for the chlorides were shown to conform to the Debye-Hückel limiting law, and the heat content trends across the rare earth chloride series showed the two series effect attributed to a change in the inner sphere water coordination of the rare earth cations between Nd and Tb (28).

Recently, we have extended many of the dilute thermodynamic and transport measurements to higher concentrations (13, $23,27,36,37$) where short range ion-ion interactions become important. The heats of dilution reported for the rare earth perchlorates (31) up to saturation show that the two-series effect across the rare earth perchlorate series persists to high concentrations virtually unchanged. In contrast, although the twoseries effect is observable in very dilute nitrate solutions, the heats of dilution for the rare earth nitrates outside this region were found to be correlated with the available stability constants of the rare earth nitrate complexes (30). In this report we present the heats of dilution measurements for the rare earth chlorides up to saturation, and compare these to the results of the perchlorate and nitrate studies.

Experimental Section

The apparatus, an adiabatically jacketed differential calorimeter similar to that of Gucker, Pickard, and Planck (12), was
the same one used for the rare earth perchlorate (31) and nitrate (30) experiments and has been previously described (28,32). The calorimeter was operated at a sensitivity of about 4×10^{-4} $\mathrm{cal} / \mathrm{mm}$ chart displacement. The accuracy of the calorimeter has been established and was monitored throughout the present experiments by measuring the heat of neutralization of HCl by NaOH . From a total of ten measurements at $25.00 \pm 0.02^{\circ}$ we obtained $\Delta H^{\circ}=-13.334 \pm 0.018 \mathrm{kcal} \mathrm{mol}^{-1}$ for the heat of neutralization corrected to infinite dilution. This is in good agreement with $-13.34 \mathrm{kcal} \mathrm{mol}^{-1}$ recommended by Hepler and Woolley (14).

The stock solutions were prepared from the rare earth oxides and C.P. grade HCl . The oxides were purified by ion exchange methods by the Rare Earth Separation Group of the Ames Laboratory. The pH of the stock solutions was adjusted to guarantee a $1: 3$ ratio of rare earth to chloride ions. All secondary solutions were prepared by weight from the stock solutions and conductivity water with a specific conductance of less than 1×10^{-6} $\mathrm{mho} \mathrm{cm}{ }^{-1}$, all weights being converted to mass. The stock, saturated, and some of the secondary solutions were analyzed by gravimetric oxide (33), sulfate (33), and/or EDTA (29) for the rare earth content and by a potentiometric AgNO_{3} (33) method for the chloride content. The agreement between the anion and cation analyses was within 0.1%, showing that the stoichiometry was $1: 3$ for the rare earth to chloride ratio. The analyses indicated that the concentrations were known to better than $\pm 0.1 \%$ in terms of the molality.

Hydrated crystals of the rare earth chlorides were grown from saturated solutions at $25.00^{\circ} \mathrm{C}$ and were dried over BaCl_{2} or CaCl_{2}. The ratio of rare earth chloride to number of water molecules was determined by EDTA titrations. LaCl_{3} and PrCl_{3} crystallized as the heptahydrate, while the rest crystallized as the hexahydrates, all within $\pm 0.1 \%$ of the theoretical water content.

The experimental procedure for the heats of dilution and heats of solution measurements was similar to that employed for the rare earth perchlorate (31) and rare earth nitrate (30) experiments and is fully described elsewhere (28,32). One or two samples of rare earth chloride solution were diluted into about 900 g of water. Diluting the first sample of initial molality m_{1}, containing n^{\prime} moles of rare earth chloride, into the water giving
a final concentration of m_{2}, evolves a quantity of heat q^{\prime}. Diluting a second sample of the same initial concentration m_{1}, containing $n^{\prime \prime}$ moles of rare earth chloride, into the solution of molality m_{2}, resulting from the first dilution, to give a final concentration of m_{3}, evolves a quantity of heat $q^{\prime \prime}$. The integral heats of dilution, $\Delta H_{i, f}$, and the relative apparent molal heat content, ϕ_{L}, are related to the heats evolved, q^{\prime} and $q^{\prime \prime}$, by

$$
\begin{gather*}
\Delta H_{1,2}=\phi_{\mathrm{L}}\left(m_{2}\right)-\phi_{\mathrm{L}}\left(m_{1}\right)=q^{\prime} / n^{\prime} \tag{1}\\
\Delta H_{1,3}=\phi_{\mathrm{L}}\left(m_{3}\right)-\phi_{\mathrm{L}}\left(m_{1}\right)=\left(q^{\prime}+q^{\prime \prime}\right) /\left(n^{\prime}+n^{\prime \prime}\right) \tag{2}
\end{gather*}
$$

For samples with dilute initial concentrations, only the first dilution was made, eq 1 , since the size of the sample bulb precluded a second dilution.

Similarly, dissolving two samples of the rare earth hydrate successively we obtain for the integral heats of solution, $\Delta H_{x, f}$,

$$
\begin{gather*}
\Delta H_{x, 2}=\phi_{\mathrm{L}}\left(m_{2}\right)-\bar{L}^{\prime}=q^{\prime} / n^{\prime} \tag{3}\\
\Delta H_{x, 3}=\phi_{\mathrm{L}}\left(m_{3}\right)-\bar{L}^{\prime}=\left(q^{\prime}+q^{\prime \prime}\right) /\left(n^{\prime}+n^{\prime \prime}\right) \tag{4}
\end{gather*}
$$

where $\bar{L} \cdot$ is the molal enthalpy of the hydrate relative to infinite dilution, and the $\phi_{\mathrm{L}}\left(m_{f}\right)$ in eq 3 and 4 are obtained from the heat of dilution experiments. The heats evolved, q^{\prime} and $q^{\prime \prime}$, were corrected for the change in vapor pressure over the solutions in the sample bulbs, the heat of breaking the glass sample bulbs, and for variation of the ratio of the heat capacities of the two calorimeter containers and their contents. The defined thermochemical calorie, 4.1840 absolute J , was used throughout this work. All measurements refer to $25.00 \pm 0.02^{\circ} \mathrm{C}$.

Calculations and Results

The experimental heats of dilution and solution are given in Tables I and II, respectively. For those groups of dilutions having the same initial concentration, m_{1}, the initial concentration is listed only once. The first set of entries for each salt refers to the saturated solution. The samples with an asterisk in Tables 1 and II, referring to eq 2 and 4, were diluted into the solution resulting from the dilution of the immediately preceding sample, which refers to eq 1 and 3.

The heats of dilution $\Delta H_{1,2}$ and $\Delta H_{1,3}$, the "long chords", were used to obtain the "short chords", $\Delta H_{3,2}$,

$$
\begin{equation*}
\Delta H_{3,2}=\Delta H_{1,2}-\Delta H_{1,3}=\phi_{\mathrm{L}}\left(m_{2}\right)-\phi_{\mathrm{L}}\left(m_{3}\right) \tag{5}
\end{equation*}
$$

For these short chords, m_{2} is considered the final, and m_{3} the initial concentration of the dilution. The $\Delta H_{3,2}$ values are listed in Table I immediately following the $\Delta H_{1,2}$ and $\Delta H_{1,3}$ data. For LaCl_{3} the initial concentrations of the two-break runs were not the same and no $\Delta H_{3,2}$ values could be calculated. For HoCl_{3} only one two-break run was made. However, except for EuCl_{3} and LuCl_{3}, heat of dilution data up to 0.2 m are available from previous work in this laboratory $(28,32)$. These previous data were added to the presently reported ΔH values for fitting purposes. For the combined data sets the lowest final concentrations ranged from 0.0001 to 0.001 m . Some of the dilutions for LaCl_{3} were made with very dilute $\mathrm{HCl}(\mathrm{pH} 4.4)$ to check if appreciable hydrolysis occurs in rare earth chloride solutions. The results for LaCl_{3} in Table I indicate that the heats of dilution are insensitive to slight variation in pH due to the addition of very small amounts of HCl , showing that the heat contribuion from hydrolysis under these conditions is negligible.

As was the case for the rare earth perchiorates (31) and the rare earth nitrates (30) the heats of dilution for the rare earth chlorides were successfully fitted directly to a power series in multiples of $m^{1 / 4}$ over the whole concentration range,

$$
\begin{equation*}
\Delta H_{i, t}=\sum_{j=1}^{6} A_{j}\left(m_{t}^{p_{j}}-m_{i}^{p_{i}}\right) \tag{6}
\end{equation*}
$$

which can be used to calculate ϕ_{L} by setting $m_{i}=0$ and letting m_{f} be any concentration desired (since $\Delta \phi_{\mathrm{L}}=-\Delta H$)

$$
\begin{equation*}
\phi_{\mathrm{L}}=\sum_{j=1}^{6} A_{j} m^{p_{i}} \tag{7}
\end{equation*}
$$

As before, the first term is $A_{1}=6990(7)$ with $p_{1}=1 / 2$, the Debye-Hückel limiting law constraint. In contrast to the perchlorates and nitrates, only five empirical terms were necessary to fit the chlorides adequately. The coefficients A_{j} and powers p_{j} to be used with eq 6 and 7 are given in Table III. The differences between the calculated and experimental ΔH values are listed in the fourth column in Table I, and are plotted for TbCl_{3} in Figure 1, which is typical of the other salts. The dilute range for TbCl_{3} is illustrated in Figure 2 on a $\bar{P}_{\text {I }}$ plot. The criteria for the choice of powers in the least-squares fits were the same as given in the perchlorate work (31).

The relative partial molal heat contents of the solute, \bar{L}_{2}, and the solvent, \bar{L}_{1}, were calculated from

$$
\begin{align*}
& \bar{L}_{2}=\phi_{\mathrm{L}}+m\left(\frac{\partial \phi_{\mathrm{L}}}{\partial m}\right)_{T, P, n_{1}} \tag{8}\\
& \bar{L}_{1}=-\frac{M_{1} m^{2}}{1000}\left(\frac{\partial \phi_{\mathrm{L}}}{\partial m}\right)_{T, P, n_{1}} \tag{9}
\end{align*}
$$

where M_{1} is the molecular weight of water, $18.0154 \mathrm{~g} \mathrm{~mol}^{-1}$. The results for ϕ_{L}, \bar{L}_{2}, and \bar{L}_{1} calculated from eq 7,8 , and 9 are illustrated in Figures 3-7, and are given in Table IV. The $\phi_{\mathrm{L}}, \bar{L}_{2}$, and \bar{L}_{1} for the rare earth nitrates and perchiorates at even concentrations are given in Tables V and VI. Tables IV, V, and VI are available from the ACS Microfilm Depository Service; see paragraph at end of paper regarding supplementary material.

The heats of solution to infinite dilution for the rare earth chloride hydrates, \bar{L}, were calculated from eq 3 and 4 with $\Delta H_{x,}$ and $\phi_{L}\left(m_{l}\right)$ taken from Table II. $\phi_{L}\left(m_{r}\right)$ was calculated from eq 7. The L^{\prime} are listed in Table II. The standard heats of solution for $\mathrm{EuCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{LuCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, reported by Hinchey and Cobble (15) are -8770 ± 30 and -11910 ± 20 cal mol $^{-1}$, respectively. These are in reasonable agreement with -8714 and -11860 cal mol ${ }^{-1}$ reported in Table II for these two hydrates.

The standard deviations, σ, expected for the ΔH values are listed in column five in Table I and are discussed in the perchlorate paper (31). The weighting factors in the least-squares fits were taken as $1 / \sigma^{2}$. The standard deviations in the fits ranged from 4.5 to 10 cal . The main cause of the slightly larger deviations in the chloride fits as compared to the perchlorate and nitrate fits is due to small mismatches between the data reported here and the previous dilute measurements that were included in the fits. The random and systematic errors in $\phi_{\mathrm{L}}, \bar{L}_{2}$, and \bar{L}_{1} are similar to those reported and discussed in the perchlorate measurements (31).

Discussion

The heats of dilution for 11 rare earth chloride solutions in the dilute concentration range have been discussed by Spedding, Csejka, and DeKock (28). The present measurements extend these data to saturation and also give the results for EuCl_{3} and LuCl_{3}. Analysis of the combined data shows that all of the rare earth chlorides conform to the Debye-Hückel limiting law in dilute solutions, within experimental error, as judged by \bar{P}_{i} plots.

The ϕ_{L} curves for $\mathrm{LaCl}_{3}, \mathrm{SmCl}_{3}$, and LuCl_{3} are compared to the ϕ_{L} curves of the respective nitrates (30) and perchiorates (31) in Figures 3-5. The chloride curves remain above the perchlorates and nitrates throughout the concentration range. The pronounced inflection points in the perchlorates are much smalier in the chlorides. These relative shapes of the chloride and perchlorate ϕ_{L} curves also appear in the divalent alkaline earth chlorides and perchlorates, particularly with respect to the severity of the inflection points (43).

Table I. Heats of Dilution of Some Aqueous Rare Earth Chloride Solutions at $25{ }^{\circ} \mathrm{C}$

Table I. Continued

m_{i}	$10^{4} \mathrm{mf}$	$\begin{gathered} -\Delta H_{i, f}, \\ \mathrm{cal} \mathrm{~mol} \end{gathered}$	$\begin{gathered} \text { Exptl- } \\ \text { calcd } \\ \left(\mathrm{cal} \mathrm{~mol}^{-1}\right) \\ \hline \end{gathered}$	$\stackrel{\sigma}{\mathrm{cal}_{\mathrm{mol}}}$	m_{i}	$10^{4} \mathrm{~m}_{\mathrm{f}}$	$\begin{gathered} -\Delta H_{i, f} \\ \text { cal } \mathrm{mol}^{-1} \end{gathered}$	$\begin{gathered} \text { Exptl - } \\ \text { calcd } \\ \text { (cal } \left.\mathrm{mol}^{-1}\right) \end{gathered}$	$\stackrel{\sigma}{\mathrm{mol}^{-1}}$
0.003176	15.761	85.7	-0.9	7.1	$0.001996{ }^{\text {c }}$	9.672	77.5	1.8	7.2
0.002798	13.891	87.2	4.7	6.3	0.002135	10.452	82.0	5.2	6.5
0.003252	15.856	94.5	5.2	6.5	0.002287	11.162	81.3	2.1	6.3
0.003210	15.587	95.6	6.4	5.7	0.002596	12.781	81.9	-0.5	6.2
0.003318	16.492	93.2	5.4	5.8	0.003153	15.595	90.8	2.6	6.3
0.003617	17.606	97.1	4.1	5.7	0.003363	16.492	94.6	3.3	6.3
0.004155	20.766	98.3	3.6	5.7	0.004037	19.536	107.2	7.9	6.6
0.004032	20.052	99.0	4.7	5.6	0.005180	25.685	111.4	6.1	6.4
0.004552	22.582	103.1	4.3	5.6	0.005155	25.543	110.7	5.4	6.3
0.004512	22.572	101.3	3.8	5.5	0.005380	26.812	109.4	3.4	6.3
0.005758	28.676	110.0	3.2	6.1	0.005262	26.214	108.9	3.6	6.2
0.005842	29.095	109.9	2.7	6.2	0.006170	30.947	111.3	1.0	6.3
0.007120	33.686	128.1	6.0	5.9	0.006511	31.573	116.3	-0.8	6.7
0.007914	40.666	122.4	8.4	6.3	$\begin{aligned} & 0.007704 \\ & 0.008086 \end{aligned}$	38.094	125.1	4.2	6.7
Samarium Chloride						40.170	121.6	-0.5	7.0
3.641	9.672	6922.1	2.1	4.1	$\begin{aligned} & 0.006957 \\ & 0.006605 \end{aligned}$	$\begin{aligned} & 33.536 \\ & 33.028 \end{aligned}$	124.5	-0.5 3.9	5.5
	19.963*	6844.6	0.3	5.9			117.3	4.1	5.2
	8.317	-	-	-	Europium Chloride			-4.4	4.4
	18.284*	6855.8	1.1	5.6	3.587	10.266	7083.1		
3.507	9.505	-	-	-			7004.4		6.2
	19.519*	6568.0	6.3	5.5	10.963		7084.4	-7.1 3.2	4.6
	9.096	6637.4	-2.8	4.2		22.241^{*}	7000.0	-2.7	6.6
	9.660	-	-	-	3.066	9.102	6016.1	8.2	3.4
	$19.430 *$	6568.5	6.2	5.4		18.922*	5943.4	11.3	4.9
3.179	10.131	5943.3	-5.3	4.2		9.163	6013.4	6.1	3.8
	10.452	5941.7	-4.1	3.7	2.889	$\begin{aligned} & 12.348 \\ & 23.922 \end{aligned}$	$\begin{aligned} & 5615.5 \\ & 5538.6 \end{aligned}$	-10.2	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$
	21.354*	5859.7	-9.3	5.3				-10.9	
2.865	11.162	5319.6	3.4	3.6	2.573	14.033	5004.3	-3.4-6.8	5.5 4.2
	22.868*	5238.3	1.3	5.1		28.069*	4916.4		5.8
2.523	12.781	4662.5	-2.8	3.6	2.147	13.344	4258.7	3.6	3.4
	25.959*	4580.7	-2.3	5.0		27.280*	4161.7	-7.5	4.8
2.116	15.618	-	-	-		13.432	4253.2	-1.3	
	32.070^{*}	3858.6	-0.7	5.3		27.931^{*}	4161.5	-4.5	3.5 5.0
	15.595	3955.5	5.5	3.7	1.980	16.532	3953.8	0.5	5.0 3.9
	$31.528 *$	3864.6	2.9	5.1		33.201^{*}	3858.9	-3.7	5.4
1.945	16.492	3682.0	8.2	3.6		16.273	3960.6	5.5	3.9
	33.628*	3587.3	4.9	5.1		33.270 *	3863.0	0.6	5.4
1.666	19.536	3240.6	0.4	3.8	1.694	17.531	3495.9	3.0	4.3
	40.373*	3133.5	-7.5	5.4		18.749	3491.4	$\begin{array}{r} 6.4 \\ -4.4 \end{array}$	3.7
	19.395	-	-	-		$\begin{gathered} 36.445^{\circ} \\ 19.246 \end{gathered}$	3390.5		5.23.7
	$39.038 *$	3144.1	-2.0	5.1	1.526		3227.6	-0.4	
1.437	21.548	2911.7	1.0	4.3		38.552*	3128.6	-3.8	5.1
	21.492	-	-	-		19.722	3217.6	$\begin{aligned} & -7.5 \\ & -7.0 \end{aligned}$	3.7
	43.626*	2808.4	-2.7	5.1		39.489*	3121.6		- 5.1
1.137	25.685	2494.4	-0.5	3.8	1.182	22.944	2727.8	18.2	3.8
	51.797*	2382.9	-6.6	5.2		49.801*	2600.1	6.0-3.0	5.6
	25.543	2495.3	-0.3	3.7	1.042	$\begin{aligned} & 25.674 \\ & 52.809^{\circ} \end{aligned}$	2495.9		3.8
	51.552*	2384.6	-5.7	5.1			2382.9	-5.1	5.3
1.063	26.812	2389.2	-5.4	3.7	0.8286	31.573	2172.0	-0.6	4.0
	53.802*	2279.8	-8.8	5.1		64.609*	2052.0	-2.4	5.5
	26.214	2397.0	-0.6	3.7		30.316	2179.6	1.1	3.8
	52.621^{*}	2288.1	-4.2	5.0		$61.246 *$	2061.9	-2.3	5.2
0.8527	30.947	2109.4	2.4	3.8	0.6733	29.160	1964.6	0.7	3.5
	61.701*	1998.1	1.4	5.1		62.790^{*}	1836.4	-3.1	5.0
	31.573	2112.6	8.4	3.9		28.794	1962.5	-3.2	3.4
	65.109*	1996.3	9.3	5.4		62.157^{*}	1836.3	-5.1	4.9
0.6702	38.094	1834.6	-4.1	4.0	0.5187	29.279	1737.5	2.8	3.1
	77.036*	1709.4	-8.4	5.4		63.091^{*}	1610.6	0.6	4.4
	40.170	1826.7	-3.9	4.2	0.3866	39.892	1477.5	0.2	4.1
	80.856*	1705.0	-3.4	5.6		47.211	1447.2	-2.7	4.7
0.5158	33.536	1647.2	2.7	3.2	0.2819	41.448	1282.7	-0.6	3.7
	69.572*	1522.6	-1.2	4.4		39.829	1292.4	2.8	3.6
	33.028	1650.8	4.2	3.1	0.1662	25.786	1098.9	0.9	2.0
	66.048*	1533.5	0.1	4.2		26.595	1094.1	0.4	2.1
0.3604	51.768	1339.9	1.9	4.8	0.09530	15.817	937.3	-0.4	1.6
0.2687	44.890	1204.6	5.0	3.8		16.305	932.0	-2.3	1.5
	46.036	1203.0	7.5	3.9	0.02154	3.375	614.3	11.8	4.2
0.1596	32.661	1019.9	9.5	2.4		3.877	602.2	8.0	4.2
	28.260	1038.6	7.9	2.2	0.002076°	10.266	78.7	2.7	7.5
0.09711	27.269	858.6	11.4	1.7	0.002224	10.963	84.4	5.9	8.1

m_{i}	$10^{4} \mathrm{~m}_{f}$	$\begin{gathered} -\Delta H_{i, f} \\ \text { cal mol }{ }^{-1} \end{gathered}$	$\begin{aligned} & \text { Exptl- } \\ & \text { calcd } \\ & \text { (cal } \left.\mathrm{mol}^{-1}\right) \end{aligned}$	$\begin{aligned} & \sigma \\ & \text { cal } \mathrm{mol}^{-1} \end{aligned}$	m_{i}	$10^{4} m_{f}$	$\begin{gathered} -\Delta H_{i, f}, \\ \mathrm{cal} \mathrm{~mol}^{-1} \end{gathered}$	$\begin{aligned} & \text { Exptl - } \\ & \text { calcd } \\ & (\text { cal mol } \end{aligned}$	$\stackrel{\sigma}{\mathrm{cal}^{-1}}$
0.001892	9.102	72.7	-3.1	5.9	0.006325	30.914	120.2	2.1	5.0
0.002392	12.348	77.0	0.8	6.8	0.006173	29.301	125.2	4.0	4.5
0.002807	14.033	87.9	3.3	7.1	Terbium Chloride				
0.002728	13.344	97.0	11.1	5.9	3.571	10.259	7664.6	3.8	4.7
0.002793	13.432	91.7	3.2	6.1		20.448^{*}	7575.9	-9.8	6.5
0.003320	16.532	94.9	4.2	6.6	3.380	13.513	7175.9	-12.7	5.9
0.003327	16.273	97.6	4.8	6.7		28.324*	7105.1	7.5	8.7
0.003645	18.749	100.9	10.8	6.4		12.652	7204.3	8.9	5.5
0.003855	19.246	99.0	3.4	6.2		25.959**	7112.1	2.4	7.8
0.003949	19.722	96.0	-0.4	6.4	2.932	17.389	6164.1	-3.2	6.5
0.004980	22.944	127.8	12.2	6.8		36.457^{*}	6068.6	1.7	9.5
0.005281	25.674	112.9	2.0	6.5	2.509	16.687	5305.2	5.5	5.4
0.006461	31.573	120.0	1.7	6.8		35.557*	5202.1	3.8	8.0
0.006125	30.316	117.7	3.4	6.5	2.049	21.818	4382.7	-6.1	5.7
0.006279	29.160	128.1	3.8	6.0		45.105*	4275.0	-6.7	8.2
0.006216	28.794	126.2	1.9	6.0	1.694	49.688	3629.2	-4.4	10.2
0.006309	29.279	126.9	2.2	5.3		97.911^{*}	3491.5	-10.0	13.8
Gadolinium Chloride					1.588	17.868	3780.0	-1.7	4.7
3.590	10.713	7358.0	-7.2	4.7		35.165	3517.2	8.8	7.3
	21.632*	7274.1	-13.5	6.6		$35.248 *$	3510.7	2.6	10.3
3.436	9.272	7055.4	14.5	3.9	1.139	21.772	2829.6	-4.5	3.5
	18.602*	6977.2	8.7	5.5		42.068**	2737.5	-0.8	4.7
3.201	8.468	6548.9	4.5	3.4	0.9855	42.523	2507.2	16.8	6.1
	17.422*	6467.7	-4.2	4.8		84.327**	2375.5	11.9	8.1
	9.941	6521.9	-8.2	3.9	0.7544	32.821	2165.8	3.7	4.1
	$20.061{ }^{\text {- }}$	6446.5	-8.5	5.5		65.270^{*}	2050.5	4.9	5.5
2.868	10.910	5828.9	-3.9	3.9	0.4492	24.661	1697.9	-2.4	2.4
	22.506*	5750.6	-1.5	5.6		49.028*	1595.4	0.3	3.3
2.551	12.546	5199.6	3.4	4.0		24.671	1696.1	-4.2	2.4
	26.615*	5109.5	2.5	5.9		49.112*	1592.5	-2.4	3.3
2.148	14.379	4446.1	6.0	3.9	$0.002045^{\text {c }}$	10.259	88.7	13.5	8.0
	29.943*	4347.5	-1.1	5.6	0.002832	13.513	70.7	-20.3	10.5
1.858	15.832	3933.3	2.7	3.7	0.002596	12.652	92.2	6.5	9.6
	31.945^{*}	3840.5	0.2	5.2	0.003646	17.389	95.4	-5.0	11.5
1.524	19.018	3372.3	4.1	3.8	0.003556	16.687	103.1	1.7	9.7
	38.701*	3258.3	-11.8	5.3	0.045510	21.818	107.6	0.6	10.0
	17.497	3385.1	7.1	4.1	0.009791	49.688	137.6	5.5	17.2
1.438	20.467	3209.2	-15.7	3.9	0.003525	35.165	6.5	6.2 -3.6	12.7 50
	40.883^{*}	3109.2	-17.8	5.3	0.004207	21.772	92.1	-3.6	5.9
1.209	21.977	2871.0	4.7	3.7	0.008433	42.523	131.7	4.9	10.1
	44.622*	2762.9	-0.2	5.2	0.006527	32.821	115.4	-1.2	6.8
0.9756	24.562	2507.5	4.4	3.6	0.004903	24.661	102.5	-2.6	4.1
	49.196*	2398.0	0.1	4.9	0.004911	24.671	103.6	-1.8	4.1
0.8087	29.031	2230.5	-0.7	3.7	Dysprosium Chloride				
	58.003*	2119.1	-0.9	5.1	3.631	8.404	7762.7	-10.4	4.0
0.6390	33.954	1955.7	5.3	3.8		17.733*	7691.2	-5.0	6.0
	67.585*	1833.5	-0.1	5.1		7.612	7785.7	4.2	3.6
0.4448	30.914	1657.5	5.9	3.0		15.484^{*}	7718.2	6.3	5.1
	$63.250 *$	1537.3	3.7	4.0	3.098	8.521	6622.4	11.2	3.5
0.3590	29.301	1519.4	10.4	2.6		18.353*	6532.9	1.6	5.3
	61.732^{*}	1394.1	6.4	3.7	2.783	11.216	5917.7	1.3	4.6
0.2484	54.509	1196.5	3.1	4.5		6.828	5957.8	-2.9	2.7
	59.290	1181.3	3.0	4.8		$15.50{ }^{*}$	5884.5	2.4	4.3
0.1593	36.289	1053.2	6.5	2.7	2.494	10.621	5315.1	-14.3	3.4
	37.847	1047.4	7.2	2.8		21.289*	5239.2	-12.2	4.9
0.09913	21.123	933.1	3.8	1.5	2.172	10.713	4699.2	-0.4	3.0
$0.002163^{\text {c }}$	10.713	83.8	6.4	8.1		21.595*	4622.6	2.0	4.3
0.001860	9.272	78.1	5.9	6.7		9.126	4720.1	5.4	3.0
0.001742	8.468	81.2	8.7	5.9	1.910	16.614	-	-	-
0.002006	9.941	75.4	0.3	6.7		$33.109 *$	4072.1	-3.5	5.6
0.002251	10.910	78.3	-2.5	6.8		10.798	4221.1	7.1	2.7
0.002662	12.546	90.1	0.9	7.2		21.604*	4142.2	6.4	3.8
0.002994	14.379	98.6	7.1	6.8		9.986	4219.5	-2.0	2.6
0.003195	15.832	92.8	2.6	6.4		20.133*	4147.6	2.8	3.6
0.003870	19.018	114.0	15.9	6.5	1.669	20.612	-	-	-
0.004088	20.467	99.9	2.1	6.5		42.211*	3607.0	-5.6	6.4
0.004462	21.977	108.1	4.9	6.4		13.727	3767.4	2.4	3.1
0.004920	24.562	109.5	4.3	6.1		27.931*	3673.5	-2.9	4.4
0.005800	29.031	111.4	0.2	6.3		11.972	3781.8	2.4	2.7
0.006758	33.954	122.2	5.5	6.3		24.236*	3696.4	0.3	3.8

Table I. Continued

m_{i}	$10^{4} \mathrm{~m}_{f}$	$\begin{gathered} -\Delta H_{i, t}, \\ \text { cal mol }{ }^{-1} \end{gathered}$	$\begin{gathered} \text { Exptl - } \\ \text { calcd } \\ \left(\mathrm{cal} \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{aligned} & \sigma \\ & \mathrm{mol}^{-1} \end{aligned}$	m_{i}	$10^{4} \mathrm{~m}_{f}$	$\begin{gathered} -\Delta H_{i, f} \\ \mathrm{cal}_{\mathrm{mol}}{ }^{-1} \end{gathered}$	$\begin{gathered} \text { Exptl - } \\ \text { calcd } \\ \left(\mathrm{cal} \mathrm{~mol}^{-1}\right) \end{gathered}$	$\stackrel{\sigma}{\mathrm{cal}_{\mathrm{mol}}}-1$
1.443	14.258	3374.4	-6.0	2.9	3.222	8.934	6709.7	0.9	3.7
	28.740^{*}	3289.8	-1.9	4.0		18.576*	6637.2	3.4	5.3
1.163	18.593	2893.2	-3.8	3.2		8.833	6718.7	8.9	3.6
	37.295*	2795.4	-4.3	4.4		17.817*	6646.7	8.0	5.0
0.9741	21.206	2581.1	-1.6	3.2	2.904	11.662	5998.7	-14.8	4.2
	41.861^{*}	2483.3	0.3	4.3		23.668*	5920.0	-13.1	6.0
0.5647	18.473	1952.9	5.0	2.2		11.418	6013.3	-2.3	4.1
	36.954*	1857.8	6.7	2.9		23.232*	5933.2	-2.3	5.9
0.3649	14.153	1627.3	-3.7	1.4	2.695	10.890	5596.1	1.9	3.8
	27.521^{*}	1550.9	3.0	1.8		$23.223 *$	5513.3	3.6	5.6
0.2369	39.138	1247.1	10.0	3.4	2.343	10.936	4909.2	1.7	3.7
	42.393	1237.0	13.0	3.7		12.145	4896.0	-1.3	3.6
0.1668	31.584	1108.7	7.8	2.5		24.562*	4811.2	-4.9	5.0
	35.581	1093.6	10.9	2.7	2.067	12.996	4386.4	4.7	3.4
0.09126	21.289	913.4	1.2	1.4		26.194^{*}	4296.8	-2.0	4.8
	19.202	929.0	3.9	1.3		12.781	4378.6	-4.8	3.4
0.04234	9.973	742.5	6.5	3.1		25.888*	4293.8	-6.6	4.7
	11.236	724.5	0.1	3.0	1.805	12.967	3927.0	3.7	3.1
	10.765	738.3	9.7	3.0		26.235*	3844.0	4.0	4.3
0.001773°	8.404	71.5	-5.4	7.2		12.390	3935.9	7.9	2.9
0.001548	7.612	67.5	-2.1	6.2		25.210^{*}	3854.7	9.4	4.2
0.001835	8.521	89.4	9.6	6.4	1.453	14.884	3327.6	0.3	3.0
0.001550	6.828	73.3	-5.4	5.0		30.371^{*}	3234.4	-3.7	4.2
0.002129	10.621	75.9	-2.1	6.0		15.351	3323.4	-0.5	3.1
0.002159	10.713	76.6	-2.4	5.2		$31.136 *$	3231.6	-2.9	4.3
0.002160	10.798	79.0	0.6	4.7	1.218	15.587	2951.3	-0.8	2.7
0.002013	9.986	72.0	-4.9	4.4		31.192*	2859.7	-4.4	3.8
0.002793	13.727	93.9	5.3	5.4		15.445	2950.4	-2.7	2.7
0.002424	11.972	85.4	2.1	4.7		31.326*	2859.5	-4.0	3.8
0.002874	14.258	84.5	-4.1	5.0	1.030	21.800	2622.4	-0.6	3.4
0.003730	18.593	97.9	0.4	5.4		44.183*	2515.8	-5.3	4.7
0.004186	21.206	97.8	-2.0	5.4		22.184	2617.7	-3.1	3.4
0.003695	18.473	95.1	-1.7	3.6		$44.556{ }^{*}$	2513.3	-6.5	4.7
0.002752	14.153	76.5	-6.8	2.3	0.8723	18.888	2400.4	1.1	2.7
						38.007^{*}	2301.5	-2.3	3.7
Holmium Chloride						18.836	2398.8	-0.9	2.7
3.694	52.215	7644.8	3.4	10.0		38.131^{*}	2301.4	-1.9	3.7
	45.455	7648.5	-16.9	10.0	0.6311	36.675	1937.1	2.8	4.1
	45.468	7677.1	11.8	10.0		74.494^{*}	1808.8	-2.8	5.5
3.323	42.850	6839.2	-8.1	10.0		34.328	1945.6	1.3	3.8
	40.348	6870.6	13.4	10.0		68.873^{*}	1823.8	-2.8	5.1
2.913	44.302	5949.2	2.7	10.0	0.4764	34.893	1696.8	8.4	3.5
	45.051	5940.1	-3.6	10.0		$74.270 *$	1563.0	4.3	4.9
2.669	42.380	5430.3	-10.4	10.0		38.032	1682.1	6.8	3.7
	43.481	5440.4	4.0	10.0		76.527*	1556.0	3.1	4.9
2.365	46.922	4817.4	5.7	10.0	0.3874	29.041	1569.5	10.0	2.6
	46.458	4806.3	-7.1	10.0		58.706*	1453.5	6.5	3.5
2.007	42.497	4150.0	-2.6	10.0		30.239	1563.2	9.5	2.8
	42.811	4165.6	14.2	10.0		$62.60{ }^{*}$	1440.8	5.4	3.8
1.685	36.566	3622.5	10.9	9.0	0.2666	65.206	1201.1	7.0	5.4
	36.506	3591.0	-20.9	8.9		65.400	1201.4	7.8	5.4
1.349	44.529	3020.1	-8.2	9.2	0.1674	29.084	1106.0	13.2	2.3
	44.556	3043.3	15.1	9.2		27.752	1112.4	13.0	2.2
1.013	33.432	2547.5	-1.5	5.9	0.08689	16.281	913.2	10.7	1.6
	33.270	2553.4	3.7	5.8		19.018	892.1	$\begin{array}{r}7.6 \\ \hline 19\end{array}$	1.3
0.8195	34.857	2243.3	-0.1	4.6	0.04584	10.439	753.1	19.7	3.0
	73.102*	2114.0	0.3	6.5		9.499	756.0	13.9	3.2
0.5183	47.156	1704.1	-7.5	5.5	$0.002304{ }^{\text {c }}$	11.391	78.9	-0.3	9.3
0.007310°	34.857	129.4	-0.4	8.0	0.001695	8.474	60.3	-8.7	6.5
					0.001553	7.497	60.1	-9.3	6.0
Erbium Chloride					0.001858	8.934	72.5	-2.5	6.5
3.782	11.096	-	-	-	0.001782	8.833	72.0	0.9	6.2
	$22.496{ }^{*}$	7824.1	-14.5	7.4	0.002367	11.662	78.7	-1.6	7.3
	11.391	7917.9	3.2	5.4	0.002323	11.418	80.1	0.1	7.2
	23.040^{*}	7839.1	3.5	7.6	0.002322	10.890	82.8	-1.7	6.8
3.535	8.474	7390.3	-4.1	3.7	0.002456	12.145	84.9	3.7	6.1
	16.950*	7330.0	4.5	5.3	0.002619	12.996	89.6	6.7	5.9
	7.497	7401.3	-3.4	3.4	0.002589	12.781	84.9	1.8	5.8
	15.531 *	7341.2	5.9	4.9	0.002623	12.967	83.1	-0.3	5.3

m_{i}	$10^{4} m_{f}$	$\begin{gathered} -\Delta H_{l, f,} \\ \text { cal mol } \end{gathered}$	$\begin{gathered} \text { Exptl - } \\ \text { calcd } \\ \left(\text { cal mol }^{-1}\right) \end{gathered}$	$\begin{aligned} & \sigma, \\ & \mathrm{cal}^{\left(\mathrm{mol}^{-1}\right.} \end{aligned}$	m_{i}	$10^{4} m_{i}$	$-\Delta H_{i, f}$ $\mathrm{cal} \mathrm{~mol}^{-1}$	$\begin{aligned} & \text { Exptl-- } \\ & \text { calcd } \\ & \left(\text { cal mol }^{-1}\right) \end{aligned}$	$\stackrel{\sigma}{\sigma} \mathrm{cal}_{\mathrm{mol}^{-1}}$
0.002521	12.390	81.1	-1.5	5.1	0.3700	16.008	1598.0	3.6	1.6
0.003037	14.884	93.3	4.1	5.2		32.160^{*}	1509.7	5.0	2.1
0.003114	15.351	91.8	2.4	5.2		14.432	-	-	-
0.003119	15.587	91.6	3.7	4.7		30.714*	1519.0	7.7	2.1
0.003133	15.445	90.9	1.3	4.7	0.2801	10.420	1469.7	1.2	1.3
0.004418	21.800	106.6	4.7	5.8		21.344^{*}	1396.4	6.0	2.0
0.004456	22.184	104.4	3.4	5.8		9.666	1484.0	8.6	1.5
0.003801	18.888	98.9	3.4	4.6		20.035*	1406.7	8.5	2.2
0.003813	18.836	97.4	1.1	4.6	0.1638	31.360	1077.2	4.4	2.4
0.007449	36.675	128.3	5.6	6.9		27.123	1096.2	2.9	2.1
0.006887	34.328	121.8	4.1	6.4	0.08727	16.104	908.3	0.1	1.6
0.007427	34.893	133.8	4.1	6.0		20.196	883.8	2.1	1.3
0.007653	38.032	126.1	3.7	6.1	0.03809	7.420	714.3	4.5	3.6
0.005871	29.041	115.9	3.5	4.4		7.857	709.1	4.0	3.5
0.006260	30.239	122.5	4.1	4.7	0.001798^{c}	4.347	-	-	-
					0.001775	8.845	83.0	12.2	7.0
Thulium Chloride					0.001711	8.277	71.2	-1.1	6.8
3.881	8.486	8048.1	17.1	4.7	0.001403	6.802	71.4	5.0	5.5
3.700	4.347	8041.6	-39.4	4.2	0.001554	7.690	61.7	-5.9	6.0
	17.978*	7967.1	12.0	6.4	0.001488	7.333	67.9	1.2	5.3
	8.845	7674.4	46.2	4.1	0.001723	8.300	76.1	3.3	6.1
	17.749**	7591.4	34.0	5.7	0.002026	9.967	75.4	-0.5	6.2
	8.277	7670.0	36.1	3.9	0.002114	10.550	71.1	-4.8	5.8
	17.115*	7598.8	37.2	5.6	0.003229	15.602	91.4	-1.8	6.8
3.620	6.802	7454.3	-20.3	3.1	0.003325	16.281	94.8	2.1	6.9
	14.033*	7382.9	-25.3	4.5	0.003628	17.506	101.5	4.0	6.8
	7.690	7435.3	-29.4	3.5	0.003677	18.114	92.4	-3.3	6.1
	15.539*	7373.7	-23.5	4.9	0.003753	18.533	96.9	0.8	6.1
3.328	7.333	6842.1	4.9	3.1	0.003954	19.501	101.3	3.1	5.2
	14.884*	6774.2	3.7	4.3	0.004053	19.687	99.6	-1.3	5.3
	8.300	6826.3	-0.6	3.5	0.003913	19.325	96.2	-1.4	4.5
	17.231^{*}	6750.2	-3.8	5.0	0.003983	19.785	100.8	3.3	4.5
2.916	9.885		-		0.004309	21.050	105.1	2.6	4.3
	19.572*	5853.8	-25.3	4.8	0.004310	21.391	104.4	3.8	4.3
	9.967	5955.6	4.8	3.6	0.004614	23.184	99.2	-2.3	4.1
	20.259*	5880.3	5.3	5.1	0.003216	16.008	88.3	-1.4	2.6
2.599	10.550	5313.4	-2.4	3.4	0.002134	10.420	73.4	-4.9	2.4
	21.142*	5242.3	2.4	4.7	0.002003	9.666	77.4	0.1	2.6
	9.716	5320.7	-2.7	3.6	Ytterbium Ch				
	20.702	-	-	-	4.003	10.189	8172.3	-1.0	5.1
2.225	14.040	4584.4	-1.3	4.5		21.298*	8091.9	-1.9	7.4
	13.668	-	-	-	3.515	11.465	7114.8	5.4	5.6
	28.005*	4502.1	0.7	5.4		10.903	-	-	-
1.953	15.602	4096.7	2.7	3.9	3.204	13.126	6445.2	5.0	4.9
	32.285*	4005.4	4.5	5.5		25.412*	6359.7	-3.0	6.6
	16.281	4101.0	11.7	4.0	2.881	17.573	5743.6	-6.2	6.0
	33.247*	4006.1	9.6	5.6		$35.66{ }^{*}$	5651.0	-5.1	8.5
1.712	17.506	3692.5	16.3	3.9	2.558	18.131	5109.8	-7.0	5.6
	36.277^{*}	3591.0	12.4	5.6		37.357*	5019.5	-0.1	7.9
	18.029	-	-	-	2.176	16.999	4426.0	2.2	4.4
	36.470°	3574.9	-2.9	5.5		$33.028{ }^{*}$	4336.0	-1.6	5.9
1.458	18.114	3258.9	-5.8	3.5	1.920	17.783	3971.0	-6.3	4.9
	$36.77{ }^{*}$	3166.5	-2.6	4.9		17.986	3983.7	7.7	5.0
	18.533	3262.5	0.5	3.6	1.667	23.522	3533.0	4.5	5.0
	37.528*	3165.7	-0.3	5.0		49.886*	3417.9	1.2	7.3
1.037	19.501	2611.9	-1.4	3.0	1.445	26.595	3168.5	4.3	4.9
	39.539*	2510.6	-4.5	4.2		52.476*	3060.1	0.0	6.6
	19.687	2605.8	-6.3	3.1	1.206	25.756	2807.0	0.0	4.3
	40.526*	2506.3	-5.0	4.3		52.766°	2692.8	-4.7	6.0
0.8232	19.325	2282.2	-12.3	2.6	1.005	31.315	2482.1	-0.2	4.5
	39.125*	2186.0	-11.0	3.6		63.028*	2363.6	-4.7	6.1
	19.785	2287.9	-3.8	2.7	0.7944	32.810	2165.0	1.1	4.1
	39.829*	2187.1	-7.1	3.7		65.545*	2047.2	-2.4	5.5
0.6405	21.050	2009.4	3.1	2.5	0.6567	39.753	1927.7	0.7	5.3
	43.086*	1904.3	0.6	3.5	0.4975	39.363	1679.2	2.0	4.6
	21.391	2009.5	5.2	2.5	0.3875	39.200	-	-	-
	43.099*	1905.1	1.4	3.4	1.478	23.455	3219.4	1.6	4.5
0.5156	21.492	1806.9	0.6	2.7		47.569*	3113.4	0.5	6.2
	23.184	1799.1	2.5	2.4		23.678	3218.3	1.7	4.5
	46.145*	1699.9	4.9	3.3		48.247*	3111.2	0.7	6.3

m_{i}	$10^{4} \mathrm{~m}_{\text {f }}$	$\begin{gathered} -\Delta H_{i, f} \\ \mathrm{cal}_{\mathrm{mol}}{ }^{-1} \end{gathered}$	$\begin{gathered} \text { Exptl - } \\ \text { calcd } \\ \left(\text { cal } \mathrm{mol}^{-1}\right) \end{gathered}$	$\begin{gathered} \sigma, \\ \text { cal } \mathrm{mol}^{-1} \end{gathered}$	m_{i}	$10^{4} m^{\prime}$	$\begin{gathered} -\Delta H_{i, f} \\ \mathrm{cal} \mathrm{~mol}^{-1} \end{gathered}$	$\begin{gathered} \text { Exptl - } \\ \text { calcd } \\ \left(\text { cal } \mathrm{mol}^{-1}\right) \end{gathered}$	$\begin{aligned} & \sigma, \\ & \mathrm{cal}^{-1} \end{aligned}$
1.215	19.643	2847.9	2.5	3.3	3.307	10.043	6622.8	10.3	4.2
	$39.263 *$	2750.9	1.6	4.5		21.800^{*}	6537.4	9.2	6.3
	19.342	2847.3	0.1	3.3		9.622	6621.2	4.8	3.8
	39.577^{*}	2747.0	-1.1	4.6		19.519*	6549.3	7.4	5.4
1.002	31.282	2468.6	-2.7	4.7	3.086	8.815	6162.6	-11.1	3.3
	67.519*	2339.5	-3.9	6.8		18.037*	6087.5	-13.2	4.7
	37.835	2440.7	-2.1	6.3		9.413	6176.6	8.8	3.6
	21.604	2521.0	-0.3	3.2		19.981*	6095.5	7.0	5.3
	43.283*	2418.7	-2.7	4.4	2.917	8.032	5839.2	-5.8	2.9
	21.734	2521.0	0.5	3.2		16.386*	5765.3	-9.9	4.1
	43.983*	2418.5	-0.3	4.5		8.970	5821.7	-13.8	3.2
0.7963	22.487	2212.7	-2.5	3.0		18.542*	5748.4	-12.5	4.6
	47.005*	2098.7	-8.1	4.2	2.569	9.437	5167.1	4.1	3.1
	23.697	2195.5	-13.0	3.6		20.693*	5069.4	-10.2	4.8
	21.381	2222.5	0.9	3.0		10.963	5154.8	5.7	3.9
	47.527*	2103.3	-1.6	4.4	2.249	11.269	4573.1	7.7	3.6
	22.146	-	-	-		11.451	4561.7	-2.2	3.2
	46.854*	2106.1	-1.2	4.2		23.484*	4480.7	-1.9	4.5
0.6487	23.775	1986.6	-1.1	2.8	1.999	12.631	4139.7	16.1	3.7
	48.637*	1877.0	-3.8	3.9		15.054	-	-	-
	22.877	1986.6	-6.1	2.8		30.658^{*}	4025.0	9.4	5.2
	49.112**	1871.5	-7.5	4.0	1.719	23.194	3598.4	3.1	5.0
0.5036	19.936	1792.0	8.0	2.2		47.679*	3491.9	3.4	7.0
	42.732*	1681.2	4.8	3.1		22.043	3606.9	5.0	4.7
	17.901	1795.4	-1.5	1.9		$44.436{ }^{*}$	3502.1	1.9	6.5
	36.796*	1696.0	-3.9	2.7	0.09044	14.501	921.4	-8.1	1.9
0.4324	31.170	1607.5	-0.3	3.0		12.859	940.0	-2.1	2.2
	64.899^{*}	1484.7	-2.2	4.1	0.04102	5.726	745.1	-5.2	3.8
	28.441	-	-	-		7.263	720.8	-11.2	3.6
	$58.829 *$	1500.0	-4.8	3.7	0.01119	1.899	499.4	25.6	4.5
0.2519	24.187	1318.0	8.3	1.3		2.161	464.7	-3.2	4.4
	28.037	1291.8	2.1	2.6	0.002180°	10.043	85.4	1.2	7.6
	33.408	1270.8	6.3	3.0	0.001952	9.622	71.9	-2.6	6.7
0.1625	30.858	1064.6	-2.3	2.3	0.001804	8.815	75.0	2.1	5.8
	27.594	1081.1	-1.5	2.1	0.001998	9.413	81.1	1.8	6.4
	33.501	1044.7	-10.2	2.5	0.001639	8.032	73.9	4.1	5.0
	24.641	1089.0	-9.0	1.9	0.001854	8.970	73.3	-1.3	5.6
	17.995	1137.4	0.3	1.5	0.002069	9.437	97.7	14.3	5.7
	18.241	1141.4	5.9	1.5	0.002348	11.451	81.0	-0.3	5.5
0.002130°	10.189	80.4	0.9	9.0	0.004768	23.194	106.5	-0.3	8.6
0.002541	13.126	85.5	8.0	8.2	0.004444	22.043	104.8	3.1	8.0
0.003566	17.573	92.6	-1.1	10.4	0.004757	23.455	106.1	1.1	7.6
0.003736	18.131	90.3	-6.9	9.7	0.004825	23.678	107.1	1.0	7.7
0.003303	16.999	90.0	3.8	7.3	0.003926	19.643	97.0	1.0	5.6
0.004989	23.522	115.1	3.3	8.9	0.003958	19.342	100.3	1.2	5.7
0.005248	26.595	108.4	4.3	8.2	0.006752	31.282	129.1	1.2	8.2
0.005277	25.756	114.2	4.8	7.3	0.004328	21.604	102.2	2.4	5.4
0.006303	31.315	118.5	4.5	7.6	0.004398	21.734	102.5	0.8	5.5
0.006555	32.810	117.8	3.4	6.9	0.004700	22.487	114.0	5.6	5.2
Lutetium Chloride					0.004753	21.381	119.1	2.5	5.3
4.128	7.552	-	-	-	0.004864	23.775	109.6	2.7	4.8
	15.437^{*}	8297.7	-11.7	5.5	0.004911	22.877	115.0	1.5	4.8
	6.970	8362.3	-21.8	4.0	0.004273	19.936	110.9	3.1	3.8
3.913	7.404	7927.2	9.5	4.1	0.003680	17.901	99.3	2.3	3.3
	7.258	7949.7	30.4	4.0	0.006490	31.170	122.9	1.9	5.0

${ }^{a}$ Dilutions made into very dilute $\mathrm{HCl}(\mathrm{pH} 4.4) .{ }^{b}$ For a starred sample $f=3$ and its corresponding $f=2$ value (unstarred) is given immediately above. ${ }^{c}$ For each salt, all entries above this point are $\Delta H_{1,2}$ or $\Delta H_{1,3}$ values, the rest are $\Delta H_{2,3}$ values.

The order of the ϕ_{L} curves in dilute solutions for the chlorides, perchlorates, and nitrates are in agreement with a general trend in that ϕ_{L} decreases with increasing anion size. The lower ϕ_{L} values of the nitrates, particularly near $\mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3}$, are due to nitrate complex formation as discussed in the nitrate paper (30), where it was shown that the largest amount of complex formation occurs near $\mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3}$ in dilute solutions. Complex formation is also responsible for the eventual drop of all the nitrates below the respective perchlorates at higher concentrations. The
$\mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3} \phi_{\mathrm{L}}$ curve drops below $\mathrm{Sm}\left(\mathrm{ClO}_{4}\right)_{3}$ at 0.04 m while the others cross at higher concentration. This is in agreement with the degree of complex formation for the nitrates. Curves similar to Figures 3, 4, and 5 for Pr, Nd, Gd, Dy, and Er, salts for which data on the three anions are available, show behavior intermediate to those given for La, Sm, and Lu. The ϕ_{L} curves of all the rare earth chlorides are quite similar as was the case for the perchlorates (31), while the nitrate curves showed a much larger spread with concentration (30). The \bar{L}_{2} curves for four chlorides

Table II. Heats of Solution of Some Rare Earth Chloride Hydrates at $25^{\circ} \mathrm{C}$

Hydrate	$10^{4} \mathrm{~m}_{t}$	$\begin{aligned} & -\Delta H_{x, f}, \\ & \text { cal mol } \end{aligned}$	$\begin{gathered} \phi_{\mathrm{L}}\left(m_{f}\right), \\ \mathrm{cal} \mathrm{~mol}^{-1} \end{gathered}$	$\begin{gathered} \bar{L} \\ \mathrm{cal} \mathrm{~mol}^{-1} \end{gathered}$
$\mathrm{LaCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	11.580	6476.9	217.8	6694.7
	$27.857^{\text {a }}$	6363.3	322.7	6686.0
	13.898	6461.6	236.7	6698.4
	27.963*	6371.2	323.2	6694.4
			Av	6693 ± 5
$\mathrm{PrCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	15.984	6761.2	248.0	7009.3
	34.328*	6653.0	346.3	6999.3
	16.744	6753.4	253.2	7006.7
	34.469^{*}	6657.0	346.9	7003.9
			Av	7005 ± 4
$\mathrm{NdCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	9.296	8965.3	191.9	9157.2
	12.503	8900.4	219.4	9119.8
	28.058*	8806.6	312.8	9119.4
			Av	9132 ± 18
$\mathrm{SmCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	7.236	8430.1	172.7	8602.7
	15.896**	8366.9	246.7	8613.7
	7.355	8441.9	174.0	8615.9
	16.606*	8367.0	251.6	8618.6
			Av	8613 ± 6
$\mathrm{EuCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	13.557	8488.8	231.4	8720.1
	28.175*	8387.7	320.1	8707.8
			Av	8714 ± 6
$\mathrm{GdCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	7.795	8949.5	179.9	9129.4
	19.141^{*}	8843.2	270.6	9113.8
	9.666	8921.6	198.6	9120.2
	19.901^{*}	8835.1	275.3	9110.4
			Av	9119 ± 7
$\mathrm{TbCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	10.234	9394.3	204.7	9599.0
	20.412*	9280.8	279.9	9560.6
	9.211	9348.8	195.0	9543.8
	17.834*	9257.9	263.5	9521.3
	9.891	9323.1	201.5	9524.6
	20.044*	9262.6	277.6	9540.2
	13.469	9338.8	232.1	9570.9
	29.138*	9268.2	327.5	9595.7
	11.323	9309.1	214.4	9523.6
	$27.030 *$	9242.1	316.9	9559.0
			Av	9554 ± 27
$\mathrm{DyCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	9.443	9788.7	199.0	9987.7
	19.598*	9691.8	277.7	9969.5
	9.060	9773.1	195.2	9968.3
	19.342*	9690.3	276.0	9966.4
			Av	9973 ± 9
$\mathrm{HoCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	9.753	10232.3	201.5	10433.8
	$27.868{ }^{*}$	10101.2	323.3	10424.5
	9.321	10185.9	197.3	10383.2
	19.999*	10134.9	279.2	10414.1
	12.110	10192.5	222.5	10415.0
	23.232*	10129.1	298.4	10427.5
	9.223	10211.9	196.3	10408.2
	17.314*	10163.5	261.7	10425.2
			Av	10416 ± 15
$\mathrm{ErCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	6.436	10578.6	164.3	10742.9
$\mathrm{TmCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	9.784	10922.2	199.5	11121.7
$\mathrm{YbCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	6.595	11366.4	165.9	11532.3
	14.205*	11265.5	235.6	11501.1
	6.959	-	-	-
	14.319*	11274.6	236.5	11511.1
			Av	11515 ± 11
$\mathrm{LuCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	7.728	11675.3	178.9	11854.2
	18.801	11607.5	267.9	11875.4
	5.551	11696.0	153.4	11849.5
			Av	11860 ± 11

[^0]

Figure 1. Comparison of experimental and calculated ΔH for TbCl_{3} : solid circles, $\Delta H_{1,2}$ and $\Delta H_{1,3}$, this work; half-filled circles, $\Delta H_{1,2}$ and $\Delta H_{1,3}$, Spedding, Csejka, and DeKock (28); open circles, $\Delta H_{3,2}$, this work and Spedding, Csejka, and DeKock (28).

Flgure 2. \bar{P}_{i} for TbCl_{3}; plus, Spedding, Csejka, and DeKock (28); cross, this research; line, from eq 7.
are shown in Figure 6. The rest of the chlorides fall between TbCl_{3} and NdCl_{3}. The \bar{L}_{1} curves for three rare earth chlorides, perchlorates, and nitrates are compared in Figure 7. Clearly, the effect on the solvent by the chlorides and perchlorates is different from that of the nitrates.

In order to compare differences between the several rare earth chlorides, the ϕ_{L}, \bar{L}_{2}, and \bar{L}_{1} values are shown as a function of rare earth ionic radius at several even concentrations in Figures 8, 9, and 10. The two-series effect in perchlorate solutions and in dilute nitrate solutions also appears in the rare earth chloride solutions. At a given concentration, ϕ_{L} decreases for the light rare earth chlorides to about NdCl_{3}, then increases to somewhere near TbCl_{3}, and again decreases for the rest of the heavy rare earth chlorides. It has been suggested that the coordination in the first cation hydration sphere decreases between Nd and Tb , where the light, larger rare earths have the higher, and the heavy, smaller rare earths have the lower water coordination (33). The rare earth ions between Nd and Tb would have mixtures of the two coordinations. Differences in the heats of hydration of the two coordinated forms and the effect on hydration beyond the first coordination sphere, as a function of concentration, are thought to be responsible for the displacement of ϕ_{L} in the middle of the rare earth series. Similar anomalies in the partial molal volumes (35), expansibilities (13), heat capacities (38), activities (39), conductances (34), and viscosities (40) have been correlated with this model.

As mentioned earlier, ϕ_{L} decreases with increasing anion size (if allowance is made for nitrate complex formation) in agreement with trends found for other strong electrolyte solutions. However, opposite the trend expected, ϕ_{L} increases with increasing rare

Salt ${ }^{\text {a }}$	$\begin{aligned} & \rho_{2} \\ & A_{2} \end{aligned}$	$\begin{aligned} & p_{3} \\ & A_{3} \end{aligned}$	$\begin{aligned} & p_{4} \\ & A_{4} \end{aligned}$	$\begin{aligned} & p_{5} \\ & A_{5} \end{aligned}$	$\begin{aligned} & p_{6} \\ & A_{6} \end{aligned}$
LaCl_{3}	1.00	1.50	1.75	2.00	2.75
	-18851.9306	56881.9234	-66921.7907	25185.78432	-700.23677
PrCl_{3}	1.00	1.25	1.75	2.25	2.50
	-25828.7453	31450.0882	-15249.2703	7777.34511	-2633.94188
NdCl_{3}	1.00	1.25	1.50	1.75	2.25
	-31713.2644	58452.1912	-45251.2878	14585.94568	-581.33918
SmCl_{3}	1.00	1.25	1.75	2.25	2.50
	-26728.8051	33919.6472	-17962.2252	9904.52418	-3498.29178
EuCl_{3}	1.00	1.25	1.75	2.25	2.50
	-24928.1020	30523.8496	-14973.3525	7860.25313	-2724.85141
CdCl_{3}	1.00	1.25	1.75	2.25	2.50
	-24509.6976	29804.0854	-14242.9582	7309.40773	-2509.29592
TbCl_{3}	1.00	1.25	1.75	2.25	2.50
	-23236.0089	26966.4642	-11268.9175	5068.04202	-1620.50293
DyCl_{3}	1.00	1.50	1.75	2.00	2.75
	-18103.0608	55337.3144	-65298.4944	24686.18650	-700.87878
HoCl_{3}	1.00	1.50	1.75	2.00	2.75
	-18734.6295	58919.0500	-70253.7518	26715.43185	-757.19460
ErCl_{3}	1.00	1.25	1.75	2.25	2.50
	-25245.0667	31254.9820	-15471.4556	8199.42200	-2865.06067
TmCl_{3}	1.00	1.25	1.75	2.25	2.50
	-24810.8966	30331.2598	-14683.1379	7662.19592	-2659.03415
YbCl_{3}	1.00	1.25	1.75	2.25	2.50
	-25672.0766	31961.3106	-16003.8184	8506.16918	-2972.90038
LuCl_{3}	1.00	1.25	1.75	2.25	2.50
	-24936.2600	30531.9869	-14832.5564	7731.35861	-2681.23967
$p_{1}=0.50, A_{1}=6990.00$ for all salts.					

Figure 3. Relative apparent molal enthalpy of aqueous lanthanum chloride, perchlorate, and nitrate solutions at $25^{\circ} \mathrm{C}$, from eq 7; DHLL, Debye-Hückel limiting law.
earth cation size (for a given hydration series) in the chlorides reported here and the perchlorates and nitrates presented in earlier papers. This might be understood if the total hydrated cation radius plays a dominant role rather than the inner sphere cationic radius. It is known that the effective hydrated radius increases from La to Nd and Tb to Lu as shown by increasing viscosities (40) and decreasing conductances (34).

Most of the rare earth chloride complexation studies (1, 4-6, $9,10,18,20-22,24,26$) indicate that outer sphere chloride

Figure 4. Relative apparent molal enthalpy of aqueous samarium chloride, perchlorate, and nitrate solutions at $25^{\circ} \mathrm{C}$, from eq 7 ; DHLL, Debye-Hückel limiting law.
complexes are formed by an ionic strength of 1 M . Furthermore, the amount of inner sphere chloride complex formation is small (3-6, 9, 18, 24), if it is present at all. The persistence of the two-series effect, in the heat properties to high concentrations for the rare earth chlorides, indicates that the first hydration sphere of the cation remains largely intact to high concentrations. This is in agreement with the stability constant studies mentioned above. In contrast, the two-series effect disappears in the rare earth nitrates (30) where inner sphere nitrate com-

Flgure 5. Relative apparent molal enthalpy of aqueous lutetium chloride, perchlorate, and nitrate solutions at $25^{\circ} \mathrm{C}$, from eq 7; DHLL, DebyeHückel limiting law.

Figure 6. Relative partial molal enthalpy of some aqueous rare earth chlorides at $25^{\circ} \mathrm{C}$, from eq 8; DHLL, Debye-Hückel limiting law.
plexation is known to occur. Furthermore, although most of the equilibrium constants reported in the literature for the chloride complexes are only slightly smaller than those for the nitrates, the heat of formation of the chloride complex is smaller than the heat of formation of the nitrate complex by an order of magnitude (5). This accounts for the fact that the ϕ_{L} curves of the chlorides (Figures 3-5) are lowered to a much smaller extent than the ϕ_{L} curves of the nitrates.

The heats of solution for 13 rare earth chloride hydrates, six

Figure 7. Relative partial molal enthalpy of the solvent in some aqueous rare earth chloride, perchlorate, and nitrate solutions at $25^{\circ} \mathrm{C}$, from eq 9 .

Figure 8. Relative apparent molal enthalpy of some aqueous rare earth chloride solutions at $25^{\circ} \mathrm{C}$, from eq 7 .
rare earth nitrate hydrates, and four rare earth perchlorate hydrates are shown in Figure 11. $\mathrm{LaCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{PrCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ are nine-coordinated with two chlorides and seven waters in the first coordination sphere, while the rest of the chloride hydrates are eight-coordinated with two chlorides and six waters in the first coordination sphere ($2,11,19,41$). From the discussion above we believe that upon dissolution of the rare earth chloride hydrates, the two chlorides in the first hydration sphere are displaced by water molecules in the solution. In Figure 11 we have

Figure 9. Relative partial molal enthalpy of some aqueous rare earth chloride solutions at $25^{\circ} \mathrm{C}$, from eq 8 .

Figure 10. Relative partial molal enthalpy of the solvent in some aqueous rare earth chloride solutions at $25^{\circ} \mathrm{C}$, from eq 9 .
plotted the heat of the solution of the rare earth hexahydrates to form a 3.5 m solution (solid circles), and the heat of solution in forming saturated solutions (crosses). Although these 11 rare earth chloride hexahydrates are isostructural (11), in both the heats of forming a 3.5 m and saturated solutions, there is an upturn from Tb to Nd. This may reflect the formation of some of the higher inner sphere water coordination for these ions, while Tb to Lu form solely the lower coordination in the solution phase.

Of the nitrate hydrates for which heats of solution were measured in this laboratory, the nitrates of La, Nd, Gd, Ho, and

Figure 11. Relative molal enthalpies of some rare earth chloride, perchlorate, and nitrate hydrates at $25^{\circ} \mathrm{C}$; diamonds, perchlorate oc tahydrates; open circles, chloride hydrates; triangles, nitrate hydrates. The (negative) heats of solution in forming a 3.5 m solution (filled circles) and the (negative) heats of solution in forming a saturated solution (crosses) from the rare earth chloride hexahydrates are also shown.

Er are hexahydrates, while iutetium nitrate is a pentahydrate (30). In $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ the praseodymium ion is ten-coordinated with three bidentate nitrate ions and four waters in the first coordination sphere ($8,25,42$). From the primitive cell dimensions, the $\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}$, and Sm nitrate hexahydrates appear to be isostructural ($8,16,17,25,42$). The four perchlorates examined are octahydrates (31). We are not aware of any structural information on the rare earth perchlorate hydrates.

Acknowledgment

The authors thank the Ames Laboratory Rare Earth Separation Group for furnishing the oxides. They also thank J. A. Rard for helpful suggestions concerning this work, and J. L. Derer for doing preliminary calculations.

Literature Cited

(1) Bansal, B. M. L., Patil, S. K., Sharma, H. D., J. Inorg. Nucl. Chem., 26, 993 (1963).
(2) Bel'skii, N. K., Struchkov, Yu. T., Sov. Phys.-Crystallogr. (Engl. Trans.), 10, 15 (1965).
(3) Choppin, G. R., Bertha, S. L., J. Inorg. Nucl. Chem., 35, 1309 (1973).
(4) Choppin, G. R., Henrie, D. E., Buijs, K., Inorg. Chem., 5, 1743 (1966).
(5) Choppin, G. R., Strazik, W. F., Inorg. Chem., 4, 1250 (1965).
(6) Choppin, G. R., Unrein, P. I., J. Inorg. Nucl. Chem., 25, 387 (1963).
(7) Derer, J. L., Ph.D. Dissertation, lowa State University, Ames, lowa, 1974.
(8) Fuller, C. C., Jacobson, R. A., submitted to Cryst. Struct. Commun.
(9) Garnsey, R., Ebdon, D. W., J. Am. Chem. Soc., 91, 50 (1969).
(10) Goto, T., Smutz, M., J. Inorg. Nucl. Chem., 27, 663 (1965).
(11) Graeber, E. J., Conrad, G. H., Duliere, S. F., Acta Crystallogr., 21, 1012 (1966).
(12) Gucker, F. T., Jr., Pickard, H. B., Planck, R. W., J. Am. Chem. Soc., 61, 459 (1939).
(13) Habenschuss, A., Spedding, F. H., J. Chem. Eng. Data, 21, 95 (1976).
(14) Hepler, L. G., Woolley, E. M., "Water, a Comprehensive Treatise"', Vol. 3, F. Franks, Ed., Plenum Press, New York-London, 1973, p 149.
(15) Hinchey, R. J., Cobble, J. W., Inorg. Chem., 8, 917 (1970).
(16) Iveronova, V. I., Tarasova, V. P., Umanskii, M. M., Izv. Akad. Nauk SSSR Ser. Fiz., 15, 164 (1951).
(17) Iveronova, V. I., Tarasova, V. P., Zolina, Z. K., Marsakhin, G. V., Sukhodreva I. M., Zh. Fiz. Khim., 29, 314 (1955).
(18) Kozachenko, N. N., Batyaev, I. M., Russ. J. Inorg. Chem., 16 (1), 66 (1971).
(19) Marezio, M., Plettinger, H. A., Zachariasen, W. H., Acta Crystallogr., 14, 234 (1961).
(20) Moulin, N., Hussonnois, M., Brillard, L., Guiliaumont, R., J. Inorg. Nucl. Chem., 37, 2521 (1975).
(21) Nakamura, K., Kawamura, K., Bull. Chem. Soc. Jpn., 44, 330 (9971).
(22) Peppard, D. F., Mason, G. W., Hucher, I., J. Inorg. Nucl. Chem., 24, 881 (1962).
(23) Rard, J. A., Spedding, F. H., J. Phys. Chem., 79, 257 (1975)
(24) Reuben, J., Fiat, D., J. Chem. Phys., 51, 4909 (1969).
(25) Rumanova, I. M., Volodina, G. F., Belov, N. V., Sov. Phys.-Crystallogr., 9, 545 (1965).
(26) Sayre, E. V., Milier, D. G., Freed, S., J. Chem. Phys., 26, 109 (1957).
(27) Spedding, F. H., Baker, J. L., Walters, J. P., J. Chem. Eng. Data, 20, 189 (1975).
(28) Spedding, F. H., Csejka, D. A., DeKock, C. W., J. Phys. Chem., 70, 2423 (1966).
(29) Spedding, F. H., Cullen, P. F., Habenschuss, A., J. Phys. Chem., 78, 1106 (1974).
(30) Spedding, F. H., Derer, J. L., Mohs, M. A., Rard, J. A., J. Chem. Eng. Data, 21, 474 (1976).
(31) Spedding, F. H., Mohs, M. A., Derer, J. L., Habenschuss, A., J. Chem. Eng. Data, submitted, 1976
(32) Spedding, F. H., Naumann, A. W., Eberts, R. E., J. Am. Chem. Soc., 81, 23 (1959).
(33) Spedding, F. H., Pikal, M. J., Ayers, B. O., J. Phys. Chem., 70, 2440 (1966).
(34) Spedding, F. H., Rard, J. A., Saeger, V. W., J. Chem. Eng. Data, 19, 373 (1974).
(35) Spedding, F. H., Saeger, V. W., Gray, K. A., Boneau, P. K., Brown, M. A., Dekock, C. W., Baker, J. L., Shiers, L. E., Weber, H. O., Habenschuss, A., J. Chem. Eng. Data, 20, 72 (1975).
(36) Spedding, F. H., Shiers, I. E., Brown, M. A., Baker, J. L., Gutierrez, L., McDowell, L. S., Habenschuss, A., J. Phys. Chem., 79, 1087 (1975).
(37) Spedding, F. H., Shiers, L. E., Rard, J. A., J. Chem. Eng. Data, 20, 88 (1975).
(38) Spedding, F. H., Walters, J. P., Baker, J. L., J. Chem. Eng. Data, 20, 438 (1975).
(39) Spedding, F. H., Weber, H. O., Saeger, V. W., Petheram, H. H., Rard, J. A., Habenschuss, A., J. Chem. Eng. Data, 21, 341 (1976).
(40) Spedding, F. H., Witte, D., Shiers, L. E., Rard, J. A., J. Chem. Eng. Data, 19, 369 (1974).
(41) Urgo, J. V., unpublished Ph.D. Thesis, lowa State University, Ames, lowa, 1967.
(42) Volodina, G. F., Rumanova, I. M., Belov, N. V., Sov. Phys.-Crystallogr., 6, 741 (1962).
(43) Wagman, D. D., Evans, W. H., Parker, V. B., Halow, I., Bailey, S. M., Schumm, R. H., Natl. Bur. Stand. (U.S.) Tech. Note, No. 270-(1-6) (1968-1971).

Received for review May 3, 1976. Accepted July 31, 1976. This report was prepared for the U.S. Energy Research and Development Administration under Contract No. W-7405-eng-82, and is based, in part, on the Ph.D. dissertations of C. W. DeKock (1965) and G. W. Pepple (1967), submitted to the Graduate Faculty of lowa State University, Ames, lowa 50011.

Supplementary Material Avallable: Tables IV, V, and VI, listings of the ϕ_{L}, \bar{L}_{2}, and L_{1} data for the rare earth chlorides, perchlorates, and nitrates at even concentrations, are available (23 pages). Ordering information is given on any current masthead page.

Synthesis of N-Arylhydroxamic Acids

Yadvendra K. Agrawal*
Department of Chemistry, Govt. Sclence College, Rewa (M.P.), India

Preparation and properties of ten new \mathbf{N}-arylhydroxamic acids derived from 0 -tolylhydroxylamine are described. These acids are white crystalline solids and characterized by elemental analysis and infrared spectra.

In the previous communication the preparation and properties of 25 hydroxamic acids derived from p - and m-tolylhydroxylamine have been described (1, 2). Further work on ten N -arylhydroxamic acids derived from substituted benzolc acid with the general formula (I) are reported for the first time

where R is substituted benzoic acid derivatives.
The procedure based on the Schotten and Baumann reaction was used for the preparation of these N-arylhydroxamic acids. Thus freshly prepared N-o-tolylhydroxylamine and vacuum distllied acid chloride in equimolar proportions are reacted at low temperature in diethyl ether containing an aqueous suspension of sodium bicarbonate. The N -arylhydroxamic acids so obtained are purified by crystallization from a mixture of benzene and petroleum ether.

[^1]
Dlscussion

The physical properties of N -arylhydroxamic acids are given in Table I. All the hydroxamic acids are white crystalline sollds except the lodo and nitro derivatives which are light pink and yellow, respectively. They are sparingly soluble in water but readily soluble in benzene, ethyl alcohol, dloxane, diethyl ether, and chloroform.

The infrared spectra of the synthesized hydroxamic aclds were determined primarily for their characterization. In the infrared spectra only those bonds which are associated with the hydroxamic acid functional group, $-\mathrm{N}(\mathrm{OH})-\mathrm{C}=\mathrm{O}$ have been assigned. The presence of the $(\mathrm{O}-\mathrm{H})$ stretching band is assigned in the region of $3200 \mathrm{~cm}^{-1}$ and conforms with the reported value (1-6). The lower shift of (O-H) was due to the intramolecular hydrogen bonding of the type $-\mathrm{OH} \cdots \mathrm{C}=\mathrm{O}$. The ($\mathrm{C}=\mathrm{O}$) and (N - O) bands are assigned at about 1620 and $920 \mathrm{~cm}^{-1}$, respectively.

ExperImental Section

Infrared Spectra. Infrared spectra were recorded in the 2-15 μ region on a Perkin-Eimer Model 137 or 221 spectrophotometer equipped with sodium chloride optics and calibrated by standard methods. N-Arylhydroxamic acids were dried under vacuum over $\mathrm{P}_{2} \mathrm{O}_{5}$ and examined as KBr pellets.

Acld Chlorides. These were prepared by the action of thionyl chloride on the corresponding benzoic acids. The bolling points and yields of the acid chlorides, thus produced, were in agreement with the values given in literature (7).

Procedure. A typical procedure for N - o-tolyl-p-fluorobenzohydroxamic acid is described here.
Into a $500-\mathrm{ml}$, three-necked flask, equipped with stirrer, dropping funnel, and thermometer, 100 ml of diethyl ether, 12.3 g (0.1 mol) of freshly crystallized O-tolylhydroxylamine, and a

[^0]: ${ }^{a}$ For a starred sample $f=3$ and its corresponding $f=2$ value (unstarred) is given immediately above.

[^1]: - Address correspondence to this author at Health Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay-400 085, India.

